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Abstract. A generalization of determinant formulae for the classical solutions of Painlevé XXXIV
and Painlev́e II equations are constructed using the technique of Darboux transformation and
Hirota’s bilinear formalism. It is shown that the solutions admit determinant formulae even for the
transcendental case.

1. Introduction

It is well known that solutions for the Painlevé equations play a role of special functions
in nonlinear science [1]. Originally, Painlevé derived these equations in order to find
new transcendental functions determined by second-order ordinary differential equations
possessing the so-called Painlevé property. Recently, irreducibility of solutions of the Painlevé
equations has been proved by Umemuraet al [2, 3]. Umemura first gave a rigorous definition
of classical functions: starting from the field of rational functions, if a function is obtained by
finite numbers of iterations of the following permissible operations:

• differentiation,
• arithmetic calculations,
• solving homogeneous linear ordinary differential equations,
• substitution into Abelian functions,

then that function is called ‘classical’.
Umemura proved that solutions of the Painlevé equations are not classical in general in

the above sense. However, it is known that they admit classical solutions for special values
of parameters. One is the rational or algebraic solutions, and another is the transcendental
classical solutions which are expressed by rational functions in various special functions and
their derivatives.

In this paper, we discuss the Painlevé II equation (PII ),

d2u

dz2
= 2u3− 4zu + 4

(
α + 1

2

)
(1)

and equation no 34 in Gambier’s classification [4],

2w
d2w

dz2
−
(

dw

dz

)2

+ 4w3− 8zw2 + 16α2 = 0 (2)
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which we call the Painlev́e XXXIV equation (PXXXIV ). In equations (1) and (2), we have
adopted a different scale from their canonical forms [4],

d2ũ

ds2
= 2ũ3 + sũ + β (3)

2w̃
d2w̃

ds2
−
(

dw̃

ds

)2

− 8γ w̃3 + 2sw̃2 + 1= 0 (4)

for clarity of expression of solutions. The scale transformations,

s = (−4)1/3z ũ = (−4)−1/3u w̃ = ±2−4/3α−1w

β = − (α + 1
2

)
γ = ∓α/2 (5)

lead the canonical forms to our ones. We denoteu(α), PII [α] andw(α), PXXXIV [α], respectively,
when it is necessary to show the value of a parameter explicitly. These equations are related
to each other by the Miura transformation [4],

w = −du

dz
− u2 + 2z (6)

and its complement,

u = dw/dz + 4α

2w
. (7)

Umemuraet alalso proved that PII (and thus PXXXIV ) admits transcendental classical solutions
which are expressed by the Airy function whenα is an integer, rational solutions whenα is a
half-integer and that otherwise the solutions are non-classical.

It is known that the Painlev́e equations (except for PI) admit the B̈acklund transformations
(BT) which form the affine Weyl group [8–11]. For example, BT of PII is given by

S : S(u) = u +
4α

du/dz + u2 − 2z
S(α) = −α (8)

T : T (u) = −u +
4(α + 1)

du/dz− u2 + 2z
T (α) = α + 1 (9)

and〈S, T 〉 forms the affine Weyl group of typeA(1)1 . Starting from a suitable ‘seed’ solution,
we obtain ‘higher’ solutions by applying BT to it, which are expressed by rational functions
in the seed solution and its derivatives.

It is interesting and important to note two points on classical solutions for the Painlevé
equations. The first is that, in general, the classical solutions are located on special points in the
parameter space from the viewpoint of symmetry. Namely, transcendental classical solutions
are on the walls of the Weyl chambers, and rational solutions on their barycentres. The second
is that the classical solutions have additional structure. Namely, it is known that some of the
classical solutions admit such determinant formulae that they are expressed by a log derivative
of the ratio of some determinants. Moreover, application of BT corresponds to an increment
of the size of the determinant. In fact, both Airy function type and rational solutions for PII

and PXXXIV admit such a determinant structure.
Then, does such determinant structure exist even for non-classical solutions, or are non-

classical solutions so ‘transcendental’ that do not admit even such structure? Here we also
note that such determinant structure are shown to be universal among the soliton equations due
to the celebrated Sato theory [12, 13].

The purpose of this paper is to generalize the determinant formulae of the classical solutions
of PII and PXXXIV , and show that such determinant structure is universal among the solutions
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of PII and PXXXIV . The key to this generalization is to use the technique of the Darboux
transformation together with Hirota’s bilinear formalism.

This paper is organized as follows. In section 2, we summarize the derivation of PXXXIV

and classical solutions of PII and PXXXIV . We illustrate our basic ideas in section 3. Our main
results are presented in section 4. The proof for our results are given in section 5. Section 6 is
devoted to a summary and discussions.

2. PXXXIV and classical solutions of PII and PXXXIV

It is well known that PII is derived as the similarity reduction from the modified KdV
equation [7],

ut + 3
2u

2ux − 1
4uxxx = 0. (10)

In fact, putting

u(x, t) = 1

(3t)1/3
u(z) z = x

(3t)1/3
(11)

equation (10) is reduced to equation (1). Similarly, PXXXIV (2) is derived as the similarity
reduction from the KdV equation,

wt − 3
2wwx − 1

4wxxx = 0 (12)

by putting

w(x, t) = 1

(3t)2/3
(w(z)− 2z) z = x

(3t)1/3
. (13)

It is known that PII (1) is bilinearized to [14](
D2
z − µ

)
g · f = 0 (14)[

D3
z + (4z− 3µ)Dz − 4

(
α + 1

2

)]
g · f = 0 (15)

by the dependent variable transformation,

u = d

dz
log

g

f
(16)

whereµ is an arbitrary function inz, andDz is Hirota’s bilinear differential operator defined
by

Dn
z g · f =

(
d

dz
− d

dz′

)n
g(z)f (z′)

∣∣∣∣
z′=z

. (17)

The bilinear equations (14) and (15) are regarded as those for PII , but it is also possible to
derive PXXXIV as follows. First we divide equations (14) and (15) byf 2. Then, putting

ψ = g

f
w = 2

d2

dz2
logf − µ + 2z (18)

and using the formulae [16, 17]

Dzg · f
f 2

= d

dz
ψ (19a)

D2
z g · f
f 2

=
(

d2

dz2
+w +µ− 2z

)
ψ (19b)

D3
z g · f
f 2

=
[

d3

dz3
+ 3(w +µ− 2z)

d

dz

]
ψ (19c)
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we obtain (
2w

d

dz
− dw

dz
− 4α

)
ψ = 0 (20)(

d2

dz2
+w − 2z

)
ψ = 0. (21)

The compatibility condition of the linear equations (20) and (21) gives PXXXIV [α].
Let us discuss the determinant expressions for the classical solutions of PII and PXXXIV

[10, 14, 15]. In the following, the determinant with size zero should be regarded as 1.
If we chooseµ = 2z, then it is known that the bilinear equations (14) and (15) are satisfied

by

g = ρN+1 f = ρN α = N N ∈ Z>0 (22)

ρN =

∣∣∣∣∣∣∣∣∣
f (0) f (1) · · · f (N−1)

f (1) f (2) · · · f (N)

...
...

. . .
...

f (N−1) f (N) · · · f (2N−2)

∣∣∣∣∣∣∣∣∣ ρ0 = 1 (23)

wheref (m) = dm

dzm f andf satisfies the Airy equation,

d2f

dz2
= 2zf. (24)

Thus, the Airy-function-type solutions of PII [N ] and PXXXIV [N ] are given by

u = d

dz
log

ρN+1

ρN
(25a)

w = 2
d2

dz2
logρN (25b)

respectively.
The rational solutions are obtained for the case ofµ = 0, and there are two expressions

for them. One is the Schur-function-type expression given by

g = σN+1 f = σN α = N + 1
2 N ∈ Z>0 (26)

σN =

∣∣∣∣∣∣∣∣∣
qN qN+1 · · · q2N−1

qN−2 qN−1 · · · q2N−3

...
...

. . .
...

q−N+2 q−N+3 · · · q1

∣∣∣∣∣∣∣∣∣ σ0 = 1 (27)

whereqk are the polynomials inz defined by
∞∑
k=0

qk(z) ξ
k = exp

(
zξ + 1

3ξ
3
)

qk(z) = 0 for k < 0. (28)

Another expression is given by Hankel determinant as

g = κN+1 f = κN α = N + 1
2 N ∈ Z>0 (29)

κN =

∣∣∣∣∣∣∣∣∣
a0 a1 · · · aN−1

a1 a2 · · · aN
...

...
. . .

...

aN−1 aN · · · a2N−2

∣∣∣∣∣∣∣∣∣ κ0 = 1 (30)
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wherean, n = 0, 1, 2, . . . are the polynomials inz, which are defined recursively by

an = dan−1

dz
+
n−2∑
k=0

akan−k−2 n > 0 a0 = z. (31)

Thus, the rational solutions for PII [N + 1
2] and PXXXIV [N + 1

2] are given by

u = d

dz
log

σN+1

σN
= d

dz
log

κN+1

κN
(32a)

w = 2z + 2
d2

dz2
logσN = 2z + 2

d2

dz2
logκN (32b)

respectively.
We note that it is possible to generalize the above result for negativeα by the reflection

symmetry of PII and PXXXIV ,

u(−α − 1) = −u(α) (33)

and

w(−α) = w(α) (34)

respectively. Indeed, this symmetry is generated byST in equations (8) and (9).

3. Darboux transformation

The technique of Darboux transformation is well developed in the soliton theory [5]. For
example, in the case of the KdV equation (12), we start with its auxiliary linear problem,

−9xx − w9 = λ9
9t = 9xxx + 3

2w9x + 3
4wx9

(35)

whereλ is the spectral parameter. Then, one can show that equations (35) are covariant with
respect to the Darboux transformation9 → 9[N ], w→ w[N ] defined by

9[N ] = Wr(91, 92, . . . , 9N,9)

Wr(91, 92, . . . , 9N)
(36)

w[N ] = w + 2
∂2

∂x2
logWr(91, 92, . . . , 9N) (37)

where9k is a solution of the linear equations (35) withλ = λk, andWr is a Wronskian with
respect to the indicated functions. Thus, choosing an appropriate seed solution of the KdV
equation asw, one can construct series of exact solutions by using this method. For example,
starting from the solutionw = 0, we then obtain the Wronskian expression of theN -soliton
solution [6]. Although most of the expression would be somewhat formal except for the soliton
and rational-type solutions or their variants, it is important that we can express quite a wide
class of solutions in terms of the determinant.

The above result is recovered by the following bilinear equations:(
DxDt − 1

4D
4
x − 3

2wDx

)
F · F = 0 (38)(

D2
x + λ +w

)
G · F = 0 (39)[

D3
x − 4Dt + 3(−λ +w)Dx

]
G · F = 0 (40)
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whereF = Wr(91, 92, . . . , 9N),G = Wr(91, 92, . . . , 9N,9). We omit the detail, but we
can directly prove that these bilinear equations hold as the identity of the determinants from
the linear equations (35). Indeed, we recover the ‘usual’ bilinear equations by puttingw = 0,(

DxDt − 1
4D

4
x

)
F · F = 0 (41)(

D2
x + λ

)
G · F = 0 (42)(

D3
x − 4Dt − 3λDx

)
G · F = 0. (43)

From these bilinear equations, we recover the KdV equation (12) and the auxiliary linear
problem (35) by putting

w = 2
∂2

∂x2
logF 9 = G

F
. (44)

Now, keeping this correspondence between the Darboux transformation and the bilinear
formalism in mind, let us illustrate our strategy to generalize the determinant formulae for
the solutions of PII and PXXXIV . We have the bilinear equations (14) and (15) for PXXXIV .
Clearly, these bilinear equations correspond to equations (42) and (43). Thus, if we could
obtain ‘generalized’ bilinear equations which correspond to equations (39) and (40), it might
be possible to find the Darboux transformation for PXXXIV and PII which leaves the linear
equations (20) and (21) covariant. Then we obtain a generalization of the determinant formulae.

In the next section, we present our main results.

4. Main results

In this section, we present a generalization of determinant formulae for the solutions of PII and
PXXXIV .

We start with a pair of linear equations (20) and (21). As we mentioned in section 2, these
equations are compatible provided thatw satisfies PXXXIV [α]. In other words, equation (21)
follows if w andψ are solutions of PXXXIV [α] and equation (20), respectively. Then we have
the following theorem.

Theorem 4.1.Let w be a solution of PXXXIV [α], and ψ0 be a solution of the linear
equation (20). We define two sequencesψn, ϕn (n = 0, 1, 2, . . .) by

ϕ0 = w

2ψ0
(45)

ψn = dψn−1

dz
+
w

2ψ0

n−2∑
k=0

ψkψn−2−k n > 0 (46)

ϕn = dϕn−1

dz
+ψ0

n−2∑
k=0

ϕkϕn−2−k n > 0. (47)

We define the Hankel determinantτN ,N ∈ Z by

τN =


det(ψi+j−2)i,j=1,...,N N > 0

1 N = 0

det(ϕi+j−2)i,j=1,...−N N < 0.

(48)

Then,

9N = τN+1

τN
(49)
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satisfies [
2W

d

dz
− dW

dz
− 4(α +N)

]
9N = 0 (50)(

d2

dz2
+W − 2z

)
9N = 0 (51)

where

W = w + 2
d2

dz2
logτN . (52)

Thus,W satisfies PXXXIV [α +N ].

A similar formula for PII is obtained by applying the Miura transformation (6). The linear
equations (20) and (21) are reduced to(

d

dz
− u

)
ψ = 0. (53)

Then we have the following theorem.

Theorem 4.2.Let u be a solution of PII [α], and τN be the Hankel determinant given by
equation (48), whereψn andϕn are defined recursively by

ψ0 = exp

(∫
dz u

)
ϕ0 = −du/dz− u2 + 2z

2ψ0
(54)

ψn = dψn−1

dz
+ ϕ0

n−2∑
k=0

ψkψn−2−k n > 0 (55)

ϕn = dϕn−1

dz
+ψ0

n−2∑
k=0

ϕkϕn−2−k n > 0. (56)

Then,

U = d

dz
log

τN+1

τN
(57)

satisfies PII [α +N ].

As mentioned in the previous section, theorems 4.1 and 4.2 are the direct consequence of the
following proposition.

Proposition 4.3. The following bilinear equations hold:

(D2
z +w − 2z)τN+1 · τN = 0 (58)[

D3
z + (3w − 2z)Dz − 4

(
α +N + 1

2

)]
τN+1 · τN = 0. (59)

In fact, dividing equations (58) and (59) byτ 2
N and using the formulae [16, 17]

DzτN+1 · τN
τ 2
N

= d

dz
9N (60a)

D2
z τN+1 · τN
τ 2
N

=
(

d2

dz2
+W − w

)
9N (60b)

D3
z τN+1 · τN
τ 2
N

=
[

d3

dz3
+ 3(W − w) d

dz

]
9N (60c)
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we obtain the linear equations (50) and (51) in theorem 4.1. Similarly, dividing equations (58)
and (59) byτN+1τN and using the formulae [16, 17],

DzτN+1 · τN
τN+1τN

= U (61a)

D2
z τN+1 · τN
τN+1τN

= V +U2 (61b)

D3
z τN+1 · τN
τN+1τN

= d2U

dz2
+ 3UV +U3 (61c)

with

V = d2

dz2
log(τN+1τN) (62)

we find

V +U2 +w − 2z = 0 (63)

d2U

dz2
+ 3UV + (3w − 2z)U − 4

(
α +N + 1

2

) = 0. (64)

EliminatingV , we obtain

d2U

dz2
= 2U3− 4zU + 4

(
α +N + 1

2

)
. (65)

These results imply that even non-classical solutions possess the same determinant
structure as the classical solutions. Indeed, the known determinant expressions for the classical
solutions are recovered as special cases. In fact, starting with a solutionw = 2z for PXXXIV

[
1
2

]
,

the linear equation (20) yields(
z

d

dz
− 1

)
ψ = 0 (66)

from which we obtainψ0 = z without losing generality. Then, we have from the recursion
relations (45)–(47),

ψn = dψn−1

dz
+
n−2∑
k=0

ψkψn−2−k n > 0 ψ0 = z (67)

ϕn = dϕn−1

dz
+ z

n−2∑
k=0

ϕkϕn−2−k n > 0 ϕ0 = 1. (68)

Thus, we have a series of rational solutions given by equations (48), (67), (68) and

U = d

dz
log

τN+1

τN
(69a)

W = 2z + 2
d2

dz2
logτN . (69b)

The case ofN > 0 agrees with the Hankel determinant expression for the rational solutions
discussed in section 2.

Next, noticing thatw = 0 is a solution of PXXXIV [0], we find from equation (21) thatψ0

is determined by(
d2

dz2
− 2z

)
ψ = 0 (70)
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and the recursion relation (46) with equation (45) is reduced to

ψn = dψn−1

dz
. (71)

Thus, we have a series of solutions given by equations (48), (70), (71) and

U = d

dz
log

τN+1

τN
(72a)

W = 2
d2

dz2
logτN (72b)

for N > 0, which agrees with the Wronskian expression for the Airy-function-type solutions
discussed in section 2. However, the Airy-function-type solutions are the ‘singular’ case in
our formula. From equations (45) and (47), we find thatϕn = 0 for all n and thusτN = 0 for
N < 0, which does not give a meaningful result. We note that this phenomena is related to the
symmetry of theτ sequence which will be mentioned in section 6, and the correct result for
theN < 0 case is obtained by virtue of symmetry. We also note that this is the only singular
case and our determinant formula works for other cases.

5. Proof of theorems

In this section, we give the proof of the theorems 4.1 and 4.2. Since we see that these theorems
follow immediately from proposition 4.3, it is sufficient to prove it. We have to prove both
N > 0 andN < 0 cases, but we concentrate on the former case, since the latter case is proved
in a similar manner.

The bilinear equations (58) and (59) are reduced to the Plücker relations, which
are quadratic identities of the determinants whose columns are shifted. Thus, we first
construct differential formulae such that shifted determinants are expressed by operating some
differential operator on the original determinant. For this purpose, we introduce the following
notation.

Definition 5.1. Let Y be a Young diagramY = (i1, i2, . . . , ih). Then we define anN × N
determinantτNY by

τNY =

∣∣∣∣∣∣∣∣∣
ψ0 ψ1 · · · ψN−h−1 ψN−h+ih · · · ψN−2+i2 ψN−1+i1

ψ1 ψ2 · · · ψN−h ψN−h+1+ih · · · ψN−1+i2 ψN+i1
...

... · · · ...
... · · · ...

...

ψN−1 ψN · · · ψ2N−h−2 ψ2N−h−1+ih · · · ψ2N−3+i2 ψ2N−2+i1

∣∣∣∣∣∣∣∣∣ . (73)

Then, we have the following differential formulae.

Proposition 5.2.

τN = d

dz
τN (74)

τN + τN =
(

d2

dz2
+
w

2

)
τN (75)

τN − τN =
(− 1

2w + 2Nz
)
τN (76)

τN + 2τN + τN =
(

d3

dz3
+

3

2
w

d

dz
+

1

2

dw

dz

)
τN (77)
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τN − τN =
[(− 1

2w + 2Nz
) d

dz
+ 2(α − 1 +N)

]
τN (78)

τN − τN + τN =
[
2z

d

dz
+ 2N2 + 4N(α − 1)− 1

4

dw

dz
− 3(α − 1)

]
τN . (79)

The proof for proposition 5.2 is an important step. However, since this requires straightforward
but tedious calculations, we will give it in the appendix.

Finally, we prove proposition 4.3. From the Plücker relations we have,

τN+1 τN − τN+1 τN + τN+1τN = 0 (80)

τN+1 τN − τN+1 τN + τN+1τN = 0. (81)

By using proposition 5.2, we find the bilinear relations (58) and (59) from equations (80) and
(81), respectively, which is the desired result.

6. Summary and discussions

In this paper, we have presented determinant formulae for the solutions of PXXXIV and PII which
are also valid for non-classical solutions by using the technique of the Darboux transformation
and bilinear formalism. The solutions of PXXXIV [α +N ] and PII [α +N ], N ∈ Z, are expressed
by determinants whose entries are constructed from the solution of some linear equations.
Moreover, coefficients of those linear equations include the solution of PXXXIV [α] and PII [α],
respectively. We have also shown that known determinant expressions for classical solutions
are recovered as special cases. This result implies that determinant structure of the classical
solutions is universal among the solutions of PII and PXXXIV .

Finally, let us discuss the relation with the Toda equation, which will be a key for
generalization to other Painlevé equations.

In general, theτ function for PII is introduced through its Hamiltonian [10],

HII (v, u, z;α) = 1
2v

2 + (−u2 + 2z)v − 4αu

by

HII (v, u, z;α) = d

dz
logτ(α). (82)

We note that we obtain PII [α] for u from the canonical equation,

du

dz
= ∂HII

∂v

dv

dz
= −∂HII

∂u
. (83)

Then it can be shown thatu(α), which is a solution of PII [α], is expressed as

u(α) = d

dz
log

τ(α + 1)

τ (α)
. (84)

By applying BT, we obtain a sequence ofτ functions{τN }N∈Z, whereτN = τ(α+N). Okamoto
has shown that BT of PII is governed by the Toda equation on the level of theτ function.

Proposition 6.1. (Okamoto [10])τN satisfies the Toda equation,

d2

dz2
logτN = cN τN+1τN−1

τ 2
N

(85)

wherecN is a non-zero constant.
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It is well known that the solution of the Toda equation (85) is expressed by

τN = det

(
di+j−2

dzi+j−2
f

)
i,j=1,...,N

(86)

wheref is an arbitrary function inz. Equation (86) is sometimes referred as ‘Darboux’s
formula’. However, one should note that Darboux’s formula (86) is valid under the condition,

τ0 = 1 τ1 = f N > 0. (87)

(In practice,τ0 can be a constant.) In [10], it is pointed out that the Wronskian expression for the
Airy-function-type solutions of PII is a consequence of Darboux’s formula. We demonstrate
how we could apply Darboux’s formula for this case. We have a solution of PII for α = 0,

u(0) = d

dz
logψ

d2

dz2
ψ = 2zψ. (88)

Therefore, we can choose theτ functions as

τ(0) = τ0 = 1 τ(1) = τ1 = ψ. (89)

Then we have aτ sequence for the Airy-function-type solutions,

. . . , τ−3, τ−2, τ−1, τ0 = τ(0) = 1, τ1 = ψ, τ2, τ3, . . . . (90)

Now, as mentioned in section 2, we have a reflection symmetry (33) onu which implies a
symmetry on theτ function,

τ(−α) = τ(α). (91)

In the case of the Airy-function-type solutions, this symmetry induces a symmetry on theτ

sequence as

τ−N = τN . (92)

By virtue of this symmetry, we see that theτ sequence is divided into two parts as

. . . , τ3, τ2, τ1, τ0 = τ(0) = 1, τ1 = ψ, τ2, τ3, . . . . (93)

Fortunately enough, since it can be shown that thisτ sequence is governed by the Toda
equation (85) withcN = 1, we could apply Darboux’s formula forN > 0 andN < 0
separately. We note that if we prolong theτ sequence forN < 0 following to the Toda
equation (85) under the condition (87) without taking the symmetry into account, we have
τN = 0 forN < 0. This corresponds to the ‘singular’ phenomena mentioned in section 4.

In the case of rational solutions, theτ sequence is again separated into two parts. However,
we cannot apply Darboux’s formula to this case. Let us take a solution of PII for α = 1

2,

u
(

1
2

) = 1

z
. (94)

We can choose theτ function as

τ
(

1
2

) = τ0 = 1 τ
(

3
2

) = τ1 = z (95)

and we have aτ sequence for the rational solutions. Now the symmetry (91) implies a symmetry
on theτ sequence,

τN = τ−N−1 (96)

and thus we have,

. . . , τ2, τ1, τ0, τ0 = τ
(

1
2

) = 1, τ1 = z, τ2, τ3, . . . (97)
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and again theτ sequence is separated into two parts. However, in this case, theseτ functions
are shown to satisfy the Toda equation of the form

d2

dz2
logτN = τN+1τN−1

τ 2
N

− z. (98)

Thus, we cannot apply Darboux’s formula for the rational solutions. Of course, by introducing
a gauge on theτ function as

σN = ez
3/6 τN (99)

thenσN satisfy the Toda equation

d2

dz2
logσN = σN+1σN−1

σ 2
N

. (100)

However, nowσ0 is not a constant.
There are two points for being able to apply Darboux’s formula. The first is thatτ

sequence should have a symmetry which is induced from the Painlevé equation itself so that
the τ sequence is separated into two parts, which is necessary to apply Darboux’s formula
without inconsistency. The second is that theτ sequence should satisfy the Toda equation of
the form (85) under the condition (87). Both conditions are satisfied for the Airy-function-
type solution, but the second condition does not hold for rational solutions. Now, for solutions
which correspond to genericα, the symmetry on theτ function (91) does not induce any
symmetry on theτ sequence. This observation shows that it is not trivial that the genericτ

function admits determinant formula, even if it satisfies the Toda equation.
Despite the unavailability of Darboux’s formula, we could obtain the determinant formula

for rational solutions. This is due to the determinant formula of the general solution of the
Toda equation of C-type (Toda equation with the symmetry (96)) obtained in [14].

Conversely, the general determinant formula for PII strongly implies that it is possible to
construct the determinant formula for the general solution of the Toda equation in a general
setting, i.e. the Toda equation admits the determinant formula for the general solution without
any symmetries or gauge on aτ sequence. Then, our results might be regarded as the special
case of such a general solution for the Toda equation.

Moreover, it is known that the B̈acklund transformations for the Painlevé equations (except
for PI) are governed by various types of Toda equations [8–11]. Thus, it might be possible to
also present general determinant formula for other Painlevé equations. We shall work out this
problem in the next publication.
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Appendix A

Here, we give the proof for proposition 5.2.
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We first prove equation (74). Notice thatτN is expressed by

τN =


ψ1 ψ2 · · · ψN

ψ2 ψ3 · · · ψN+1

...
...

. . .
...

ψN ψN+1 · · · ψ2N−1

 ·


111 112 · · · 11N

121 122 · · · 12N

...
...

. . .
...

1N1 1N2 · · · 1NN

 (A1)

where1ij is the(i, j)-cofactor ofτN andA · B denotes a standard scalar product forN ×N
matricesA = (aij ) andB = (bij ) which is defined as

A · B =
N∑

i,j=1

aij bij = traceA tB. (A2)

The first matrix of equation (A1) is rewritten by using the recursion relation (46) as
d
dzψ0

d
dzψ1 · · · d

dzψN−1

d
dzψ1

d
dzψ2 · · · d

dzψN

...
...

. . .
...

d
dzψN−1

d
dzψN · · · d

dzψ2N−2



+
w

2ψ0


0 ψ2

0 · · · ∑N−2
k=0 ψkψN−2−k

ψ2
0 ψ0ψ1 +ψ1ψ0 · · · ∑N−1

k=0 ψkψN−1−k
...

...
. . .

...∑N−2
k=0 ψkψN−2−k

∑N−1
k=0 ψkψN−1−k · · ·

∑2N−3
k=0 ψkψ2N−3−k

.
(A3)

The above matrix in the second term is separated as
0 0 · · · 0
ψ2

0 ψ1ψ0 · · · ψN−1ψ0

...
...

. . .
...∑N−2

k=0 ψkψN−2−k
∑N−1

k=1 ψkψN−1−k · · ·
∑2N−3

k=N−1ψkψ2N−3−k



+


0 ψ2

0 · · · ∑N−2
k=0 ψkψN−2−k

0 ψ0ψ1 · · · ∑N−2
k=0 ψkψN−1−k

...
...

. . .
...

0 ψ0ψN−1 · · ·
∑N−2

k=0 ψkψ2N−3−k

. (A4)

Each of these terms gives a zero contribution in equation (A1). Hence we obtain equation (74).
Next we prove equation (75). We consider

τN + τN =


ψ1 ψ2 · · · ψN−1 ψN+1

ψ2 ψ3 · · · ψN ψN+2

...
...

. . .
...

...

ψN ψN+1 · · · ψ2N−2 ψ2N

 ·


1 11 1 12 · · · 1 1N

1 21 1 22 · · · 1 2N

...
...

. . .
...

1 N1 1 N2 · · · 1 NN


(A5)
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where1 ij is the(i, j)-cofactor ofτN . The first matrix in the right-hand side is equal to
d
dzψ0

d
dzψ1 · · · d

dzψN−2
d
dzψN

d
dzψ1

d
dzψ2 · · · d

dzψN−1
d
dzψN+1

...
...

. . .
...

d
dzψN−1

d
dzψN · · · d

dzψ2N−3
d
dzψ2N−1



+
w

2ψ0



0 0 · · · 0 0
ψ2

0 ψ1ψ0 · · · ψN−2ψ0 ψNψ0

...
...

. . .
...

...
N−2∑
k=0

ψkψN−2−k
N−1∑
k=1

ψkψN−1−k · · ·
2N−4∑
k=N−2

ψkψ2N−4−k
2N−2∑
k=N

ψkψ2N−2−k



+
w

2ψ0


0 ψ2

0 · · · ∑N−3
k=0 ψkψN−3−k

∑N−1
k=0 ψkψN−1−k

0 ψ0ψ1 · · · ∑N−3
k=0 ψkψN−2−k

∑N−1
k=0 ψkψN−k

...
...

. . .
...

...

0 ψ0ψN−1 · · ·
∑N−3

k=0 ψkψ2N−4−k
∑N−1

k=0 ψkψ2N−2−k

 . (A6)

Taking the scalar product, the first and second terms gived
dz τN and 1

2wτN , respectively, and
the third term vanishes. Hence we have equation (75).

Next we prove equation (76). We consider the following equality:

τN − τN =


ψ2 ψ3 · · · ψN+1

ψ3 ψ4 · · · ψN+2

...
...

. . .
...

ψN+1 ψN+2 · · · ψ2N

 ·


111 112 · · · 11N

121 122 · · · 12N

...
...

. . .
...

1N1 1N2 · · · 1NN

. (A7)

The first matrix of right-hand side is rewritten as
d
dzψ1

d
dzψ2 · · · d

dzψN

d
dzψ2

d
dzψ3 · · · d

dzψN+1

...
...

. . .
...

d
dzψN

d
dzψN+1 · · · d

dzψ2N−1



+
w

2ψ0


0 0 · · · 0

ψ1ψ0 ψ2ψ0 · · · ψNψ0

...
...

. . .
...∑N−1

k=1 ψkψN−1−k
∑N

k=2ψkψN−k · · ·
∑2N−2

k=N ψkψ2N−2−k



+
w

2ψ0


ψ2

0 ψ0ψ1 +ψ1ψ0 · · · ∑N−1
k=0 ψkψN−1−k

ψ0ψ1 ψ0ψ2 +ψ1ψ1 · · · ∑N−1
k=0 ψkψN−k

...
...

. . .
...

ψ0ψN−1 ψ0ψN +ψ1ψN−1 · · ·
∑N−1

k=0 ψkψ2N−2−k

. (A8)

Here we note thatψn also satisfy

dψn
dz
= (2z− w)ψn−1 + 2(n− 1)ψn−2 − dw/dz− 4α

4ψ0

n−2∑
k=0

ψkψn−2−k (A9)
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which is proved by induction from equations (20), (21) and (46). The first term of the right-hand
side of equation (A8) is rewritten using equation (A9) as

(2z− w)


ψ0 ψ1 · · · ψN−1

ψ1 ψ2 · · · ψN
...

...
. . .

...

ψN−1 ψN · · · ψ2N−2



+


0 0 0 0

2ψ0 2ψ1 · · · 2ψN−1

...
...

. . .
...

2(N − 1)ψN−2 2(N − 1)ψN−1 · · · 2(N − 1)ψ2N−3



+


0 2ψ0 · · · 2(N − 1)ψN−2

0 2ψ1 · · · 2(N − 1)ψN−1

...
...

. . .
...

0 2ψN−1 · · · 2(N − 1)ψ2N−3



−dw/dz− 4α

4ψ0



0 0 · · · 0
ψ2

0 ψ1ψ0 · · · ψN−1ψ0

...
...

. . .
...

N−2∑
k=0

ψkψN−2−k
N−1∑
k=1

ψkψN−1−k · · ·
2N−3∑
k=N−1

ψkψ2N−3−k



−dw/dz− 4α

4ψ0


0 ψ2

0 · · · ∑N−2
k=0 ψkψN−2−k

0 ψ0ψ1 · · · ∑N−2
k=0 ψkψN−1−k

...
...

. . .
...

0 ψ0ψN−1 · · ·
∑N−2

k=0 ψkψ2N−3−k

. (A10)

Applying the scalar product on these terms, we obtain equation (76). We obtain equations (77)–
(79) by similar calculations.
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